ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Joseph Dalessio, Eugenio Schuster, David Humphreys, Michael Walker, Yongkyoon In, Jin-Soo Kim
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 163-179
Technical Paper | doi.org/10.13182/FST09-A4069
Articles are hosted by Taylor and Francis Online.
In this work, synthesis is employed to stabilize a model of the resistive wall mode (RWM) instability in the DIII-D tokamak. The General Atomics/FAR-TECH DIII-D RWM model, which replaces the spatial perturbation of the plasma with an equivalent perturbation of surface current on a spatially fixed plasma boundary, is used to derive a linear state-space representation of the mode dynamics. The spatial and current perturbations are equivalent in the sense that they both produce the same magnetic field perturbation at surrounding conductors. The key term in the model characterizing the magnitude of the instability is the time-varying uncertain parameter cpp, which is related to the RWM growth rate . Taking advantage of the structure of the state matrices, the model is reformulated into a robust control framework, with the growth rate of the RWM modeled as an uncertain parameter. A robust controller that stabilizes the system for a range of practical growth rates is proposed. The controller is tested through simulations, demonstrating significant performance increase over the classical proportional-derivative controller, extending the RWM growth rate range for which the system is stable and satisfies predefined performance constraints, and increasing the level of tolerable measurement noise. The simulation study shows that the proposed model-based DK controllers can successfully stabilize the mode when the growth rate varies over time during the discharge because of changes in the operating conditions such as pressure and rotation. In terms of robust stability, this method eliminates the need for growth-rate online identification and controller scheduling.Selected Full Papers from15th WORKSHOP ON