ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Yuki Edao, Satoshi Fukada, Hidetaka Noguchi, Akio Sagara
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 140-151
Technical Paper | doi.org/10.13182/FST09-A4067
Articles are hosted by Taylor and Francis Online.
The rate of tritium released from temperature-controlled Flibe (a mixed molten salt of 2LiF + BeF2) after neutron irradiation was determined comparatively under two different conditions of Ar-H2 (10%) or Ar gas purge at a constant or linearly elevated temperature. Experimental rates of tritium release were analyzed based on its diffusion in Flibe and isotopic exchange between T atoms on surfaces and H atoms included in gaseous components. Gas released from Flibe had compositions of various ratios of HT to TF depending on the different conditions of Ar-H2 or Ar purge gas. The major molecular species of tritium released from Flibe after neutron irradiation was HT under the condition of the Ar-H2 purge and 300°C. The rate of tritium release under the Ar-H2 purge was simulated well by the present analytical model. Although its chemical form immediately after the release was TF under the condition of Ar purge, it was changed to HT partly by interaction with metallic surfaces.