ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Yuki Edao, Satoshi Fukada, Hidetaka Noguchi, Akio Sagara
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 140-151
Technical Paper | doi.org/10.13182/FST09-A4067
Articles are hosted by Taylor and Francis Online.
The rate of tritium released from temperature-controlled Flibe (a mixed molten salt of 2LiF + BeF2) after neutron irradiation was determined comparatively under two different conditions of Ar-H2 (10%) or Ar gas purge at a constant or linearly elevated temperature. Experimental rates of tritium release were analyzed based on its diffusion in Flibe and isotopic exchange between T atoms on surfaces and H atoms included in gaseous components. Gas released from Flibe had compositions of various ratios of HT to TF depending on the different conditions of Ar-H2 or Ar purge gas. The major molecular species of tritium released from Flibe after neutron irradiation was HT under the condition of the Ar-H2 purge and 300°C. The rate of tritium release under the Ar-H2 purge was simulated well by the present analytical model. Although its chemical form immediately after the release was TF under the condition of Ar purge, it was changed to HT partly by interaction with metallic surfaces.