ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
M. Zucchetti, L. Di Pace, L. El-Guebaly, B. N. Kolbasov, V. Massaut, R. Pampin, P. Wilson
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 109-139
Technical Paper | doi.org/10.13182/FST09-12
Articles are hosted by Taylor and Francis Online.
Within the framework of the International Energy Agency, an international collaborative study on fusion radioactive waste has been initiated to examine the back end of the materials cycle as an important stage in maximizing the environmental benefits of fusion as an energy provider.The study addresses the management procedures for radioactive materials following the changeout of replaceable components and decommissioning of fusion facilities. We define this as "the back end" of the fusion materials cycle. It includes all the procedures necessary to manage spent radioactive materials from fusion facilities, from the removal of the components from the device to the reuse of these components through recycling/clearance, or to the disposal of the waste in geological repositories.Fusion devices have certain characteristics that make them environmentally friendly devices; minimization of long-lived waste that could be a burden for future generations is one of these characteristics.Recycling and clearance procedures and regulations have been recently revised, and the effects of these revisions on back-end fusion materials are examined in the paper. Finally, an integrated approach to the management of back-end fusion materials is proposed, and its application to three fusion reactor designs is discussed.