ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
A. Bruschi, W. Bin, S. Cirant, G. Granucci, S. Mantovani, A. Moro, S. Nowak
Fusion Science and Technology | Volume 55 | Number 1 | January 2009 | Pages 94-107
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-27
Articles are hosted by Taylor and Francis Online.
The development of electron cyclotron resonance heating (ECRH)-electron cyclotron current drive (ECCD) as a tool for suppression of plasma instabilities requires that the millimeter-wave beams used for testing magnetohydrodynamic (MHD) stabilization schemes for ITER be able to follow magnetic island position in real time. In the FTU tokamak, the design of a new ECRH fast-steerable launcher will enable a fast-controlled deposition at a precise poloidal location and the inclusion of the mirror motion in a feedback loop aimed at MHD stabilization. Two of the four existing transmission lines will be switched to the new launcher located in a different equatorial port. It will launch two independent beams with radius in the plasma changeable between 17 and 28 mm, in order to control the deposited power density. Real-time control of the poloidal steering requires high acceleration, speed, and positioning precision of the last mirror. Additionally, oblique toroidal injection at precise angles will allow current profile shaping through controlled ECCD and heating of overdense plasmas (ne > 2.4 × 1020 m-3) using electron Bernstein waves. For optimal O-X conversion, the required toroidal angle, estimated with dedicated beam-tracing calculations, is close to ±38.5 deg, near the upper limit in the toroidal steering angle. The launch requirements and their impact on the launcher design phase are presented in the paper.