ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Researchers report fastest purification of astatine-211 needed for targeted cancer therapy
Astatine-211 recovery from bismuth metal using a chromatography system. Unlike bismuth, astatine-211 forms chemical bonds with ketones.
In a recent study, Texas A&M University researchers have described a new process to purify astatine-211, a promising radioactive isotope for targeted cancer treatment. Unlike other elaborate purification methods, their technique can extract astatine-211 from bismuth in minutes rather than hours, which can greatly reduce the time between production and delivery to the patient.
“Astatine-211 is currently under evaluation as a cancer therapeutic in clinical trials. But the problem is that the supply chain for this element is very limited because only a few places worldwide can make it,” said Jonathan Burns, research scientist in the Texas A&M Engineering Experiment Station’s Nuclear Engineering and Science Center. “Texas A&M University is one of a handful of places in the world that can make astatine-211, and we have delineated a rapid astatine-211 separation process that increases the usable quantity of this isotope for research and therapeutic purposes.”
The researchers added that this separation method will bring Texas A&M one step closer to being able to provide astatine-211 for distribution through the Department of Energy’s Isotope Program’s National Isotope Development Center as part of the University Isotope Network.
Details on the chemical reaction to purify astatine-211 are in the journal Separation and Purification Technology.
Gary Taylor, Robert W. Harvey
Fusion Science and Technology | Volume 55 | Number 1 | January 2009 | Pages 64-75
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | dx.doi.org/10.13182/FST55-64
Articles are hosted by Taylor and Francis Online.
A systematic disagreement between the electron temperature measured by electron cyclotron emission (ECE) (TECE) and laser Thomson scattering (TTS), which increases with TECE, is observed in JET and TFTR plasmas, such that TECE ~ 1.2 TTS when TECE ~ 10 keV. The disagreement is consistent with a non-Maxwellian distortion in the bulk electron momentum distribution. ITER is projected to operate with Te(0) ~ 20 to 40 keV so the disagreement between TECE and TTS could be >50%, with significant physics implications. The GENRAY ray-tracing code predicts that a two-view ECE system, with perpendicular and moderately oblique viewing antennas, would be sufficient to reconstruct a two-temperature bulk distribution. If the electron momentum distribution remains Maxwellian, the moderately oblique view could still be used to measure the electron temperature profile Te(R). A viewing dump will not be required for the oblique view, and plasma refraction will be minimal. The oblique view has a similar radial resolution to the perpendicular view, but with some reduction in radial coverage. Oblique viewing angles of up to 20 deg can be implemented without a major revision to the front end of the existing ITER ECE diagnostic design.