ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Gary Taylor, Robert W. Harvey
Fusion Science and Technology | Volume 55 | Number 1 | January 2009 | Pages 64-75
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST55-64
Articles are hosted by Taylor and Francis Online.
A systematic disagreement between the electron temperature measured by electron cyclotron emission (ECE) (TECE) and laser Thomson scattering (TTS), which increases with TECE, is observed in JET and TFTR plasmas, such that TECE ~ 1.2 TTS when TECE ~ 10 keV. The disagreement is consistent with a non-Maxwellian distortion in the bulk electron momentum distribution. ITER is projected to operate with Te(0) ~ 20 to 40 keV so the disagreement between TECE and TTS could be >50%, with significant physics implications. The GENRAY ray-tracing code predicts that a two-view ECE system, with perpendicular and moderately oblique viewing antennas, would be sufficient to reconstruct a two-temperature bulk distribution. If the electron momentum distribution remains Maxwellian, the moderately oblique view could still be used to measure the electron temperature profile Te(R). A viewing dump will not be required for the oblique view, and plasma refraction will be minimal. The oblique view has a similar radial resolution to the perpendicular view, but with some reduction in radial coverage. Oblique viewing angles of up to 20 deg can be implemented without a major revision to the front end of the existing ITER ECE diagnostic design.