ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
Seungil Park, Jinhyun Jeong, Won Namkung, Moo-Hyun Cho, Young S. Bae, Won-Soon Han, Hyung-Lyeol Yang
Fusion Science and Technology | Volume 55 | Number 1 | January 2009 | Pages 56-63
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-A4053
Articles are hosted by Taylor and Francis Online.
An 84-GHz electron cyclotron heating (ECH) system has been installed to assist plasma start-up by preionization in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The KSTAR 84-GHz ECH system consists of a 500-kW gyrotron, a transmission line, and an antenna system. The wave power is transmitted from the gyrotron to the antenna through an evacuated corrugated circular waveguide of 31.75-mm inner diameter and six miter bends, which include a pair of polarizer miter bends for polarization control. The maximum permitted vacuum pressure without radio-frequency (rf) breakdown in the 31.75-mm waveguide at 84 GHz, 500 kW was calculated to be ~0.1 torr. The pumping time to reach the vacuum pressure of 1 × 10-3 torr in the KSTAR ECH system was ~2 h by two turbomolecular pumps. The transmission efficiency of ~93% from the output of the mirror optical unit to the torus window was measured using a low-power rf source. The wave polarization by a pair of polarizer miter bends with grooved mirrors was tested using the low-power system, and it showed good agreement with numerical calculations. In this paper, we present the design and commissioning results of the KSTAR 84-GHz transmission line.