ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Yi Xu, Hong Li, Feng Xie, Jianzhu Cao, Jiejuan Tong
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 671-678
Technical Note | doi.org/10.1080/15361055.2017.1290949
Articles are hosted by Taylor and Francis Online.
The Very High Temperature Reactor (VHTR) is one of the six proposed Generation IV reactor concepts. The HTR-10, a 10 MW high temperature gas-cooled reactor was a helium cooled, graphite-moderated, and thermal neutron spectrum reactor. Since tritium (H-3) has an effect on the environment and public radiation dose, it has received more and more attention in the environmental impact assessment of nuclear facilities. Recently, several experiments on source terms in HTR-10 have been run, of which preliminary measurements indicated H-3 was an important nuclide in the primary loop of HTR-10. The production mechanism, distribution characteristic, reduction route, and release type of total H-3 in HTR-10 were analyzed and discussed in this technical note. A theoretical model was established to calculate the total activity of H-3 in the reactor core and activity concentration of H-3 in the primary loop of HTR-10. This model indicated that the majority of total H-3 was produced by ternary fission reactions and H-3 in the primary helium was mainly generated from activation reactions of impurities in the reactor core. The research results can provide useful information for the experimental measurement of H-3 in HTR-10, and promote the study of H-3 in high temperature gas-cooled reactors (HTGRs).