ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Yi Xu, Hong Li, Feng Xie, Jianzhu Cao, Jiejuan Tong
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 671-678
Technical Note | doi.org/10.1080/15361055.2017.1290949
Articles are hosted by Taylor and Francis Online.
The Very High Temperature Reactor (VHTR) is one of the six proposed Generation IV reactor concepts. The HTR-10, a 10 MW high temperature gas-cooled reactor was a helium cooled, graphite-moderated, and thermal neutron spectrum reactor. Since tritium (H-3) has an effect on the environment and public radiation dose, it has received more and more attention in the environmental impact assessment of nuclear facilities. Recently, several experiments on source terms in HTR-10 have been run, of which preliminary measurements indicated H-3 was an important nuclide in the primary loop of HTR-10. The production mechanism, distribution characteristic, reduction route, and release type of total H-3 in HTR-10 were analyzed and discussed in this technical note. A theoretical model was established to calculate the total activity of H-3 in the reactor core and activity concentration of H-3 in the primary loop of HTR-10. This model indicated that the majority of total H-3 was produced by ternary fission reactions and H-3 in the primary helium was mainly generated from activation reactions of impurities in the reactor core. The research results can provide useful information for the experimental measurement of H-3 in HTR-10, and promote the study of H-3 in high temperature gas-cooled reactors (HTGRs).