ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Brian L. Ellis, H. Fritzsche, J. Patel, J. Lang, S. Suppiah
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 660-665
Technical Note | doi.org/10.1080/15361055.2017.1290952
Articles are hosted by Taylor and Francis Online.
Tritium betavoltaics are one of the family of nuclear batteries which convert natural radioactive decay from a radioisotope into electricity that can provide continuous power without the requirement for replacement or recharging. Tritium is ideally suited to this application due to its high specific activity, low shielding requirements and relatively high availability. Owing to safety and environmental concerns over tritium leakage, metal tritides films are preferred as tritium betavoltaic sources. Titanium hydride and deuteride films were studied as analogues to titanium tritide films. The quality of the films depended on the temperature of hydrogen loading as films loaded at elevated temperatures (>100 °C) were brittle and delaminated from the semiconductor substrate while those exposed to hydrogen at room temperature continued to adhere to the substrate. For the latter films, evidence of hydrogen isotope loss was observed when left under ambient conditions over the course of a few weeks.