Korea is operating 24 nuclear power plants and a highly advanced neutron application reactor HANARO (High-flux Advanced Neutron Application Reactor). In addition, Korea is designing a tritium storage and delivery system (SDS) for ITER. We have been developing detritiation and tritium storage technologies since the operation of Wolsong CANDU (Canada Deuterium-Uranium) station in 1983. The Wolsong Tritium Removal System (TRF) was designed to remove tritium generated in heavy water of the moderator and heat transport. Catalysts transfer tritium from the tritiated heavy water to gaseous tritiated deuterium. The hydrogen isotopes, including tritium, are transported to a cryogenic distillation system where the tritium is removed for safe storage. Conventional high-pressure storage tanks can be dangerous for the storage of radioactive tritium gas. We have been studying various kinds of metal hydride, such as titanium, zirconium cobalt, and depleted uranium. Titanium was proven to store tritium safely and efficiently for a long period of time. Zirconium cobalt, meanwhile, incorporates tritium safely and compactly, and temporarily holds large quantities that can be recovered easily under safe, controlled conditions. However owing to the disproportionation characteristics of zirconium cobalt, we are now developing depleted uranium hydride safe handling technologies. In this technical note, we present the details of the recent development progress of these tritium systems.