ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Hongsuk Chung, Yeanjin Kim, Kwangjin Jung, Seungwoo Paek, Hee-Seok Kang, Ki Hyun Kim, Woojung Shon, Sung Paal Yim, Hyun-Goo Kang, Min Ho Chang, Sei-Hun Yun, Ki Jung Jung, Ki Hwan Kim, Do-Hee Ahn
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 622-627
Technical Note | doi.org/10.1080/15361055.2017.1291189
Articles are hosted by Taylor and Francis Online.
Korea is operating 24 nuclear power plants and a highly advanced neutron application reactor HANARO (High-flux Advanced Neutron Application Reactor). In addition, Korea is designing a tritium storage and delivery system (SDS) for ITER. We have been developing detritiation and tritium storage technologies since the operation of Wolsong CANDU (Canada Deuterium-Uranium) station in 1983. The Wolsong Tritium Removal System (TRF) was designed to remove tritium generated in heavy water of the moderator and heat transport. Catalysts transfer tritium from the tritiated heavy water to gaseous tritiated deuterium. The hydrogen isotopes, including tritium, are transported to a cryogenic distillation system where the tritium is removed for safe storage. Conventional high-pressure storage tanks can be dangerous for the storage of radioactive tritium gas. We have been studying various kinds of metal hydride, such as titanium, zirconium cobalt, and depleted uranium. Titanium was proven to store tritium safely and efficiently for a long period of time. Zirconium cobalt, meanwhile, incorporates tritium safely and compactly, and temporarily holds large quantities that can be recovered easily under safe, controlled conditions. However owing to the disproportionation characteristics of zirconium cobalt, we are now developing depleted uranium hydride safe handling technologies. In this technical note, we present the details of the recent development progress of these tritium systems.