ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Greg Staack, Yung-Sung Cheng, Yue Zhou, Tom LaBone
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 570-574
Technical Note | doi.org/10.1080/15361055.2017.1291041
Articles are hosted by Taylor and Francis Online.
Samples of tritiated LaNi4.15Al0.85 (LANA.85) and 13X zeolite were analyzed to obtain particle size distributions and tritium evolution rates in a simulated lung environment. This information was used to calculate intake-to-dose conversion factors (DCFs), which estimate the committed effective dose (CED) a worker would receive after inhaling either tritiated particulate. The DCFs for tritiated LANA.85 and 13X particulate with a default activity mean aerodynamic diameter (AMAD) of 5 μm were determined to be 1.01E-11 Sv/Bq and 1.11E-11 Sv/Bq, respectively. These results are comparable to that of HTO, 1.8E-11 Sv/Bq, indicating that urine bioassay results can conservatively estimate the dose delivered if the worker was exposed to any mixture of HTO, LANA.85, or 13X.