ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
February 2025
Fusion Science and Technology
Latest News
Garrish up for repeat term as DOE’s nuclear energy secretary
Theodore “Ted” Garrish—who has spent more than four decades working in nuclear—is President Donald Trump’s nominee to serve as the Department of Energy’s assistant secretary for nuclear energy, or, NE-1.
The nomination was referred to the U.S. Senate’s Committee on Energy and Natural Resources on February 3. Garrish previously held the office from 1987 to 1989 under President Ronald Reagan. Most recently, Kathryn Huff held the NE-1 post, and Michael Goff has served as interim assistant secretary since Huff stepped down in May 2024.
Garrish’s most recent term in public office was as assistant secretary for the Office of International Affairs at the Energy Department, from 2018 to 2021, during Trump’s first term. Supporters say Garrish’s 40-plus years working in the nuclear industry and in nuclear energy oversight positions makes him more than qualified to serve in the DOE office again.
Kirk L. Shanahan
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 555-564
Technical Note | doi.org/10.1080/15361055.2017.1291042
Articles are hosted by Taylor and Francis Online.
Tritium decays to 3He, and when this decay occurs inside a metal tritide, the 3He is largely retained in the material’s bulk. This impacts the subsequent behavior of the hydrogen isotope absorption and desorption, altering the materials thermodynamic characteristics. Chemical substitution can form alternative miscible hydridable metal alloys over some concentration ranges with modified thermodynamic properties. This allows the ‘tuning’ of metal hydride characteristics to expand the inventory of available materials for use, potentially allowing a closer match to desired performance characteristics. It is important to quantify tritium aging effects in order to predict the long term, in-process behavior of metal hydride materials. The Savannah River National Laboratory has been interested in elucidating the impact of tritium exposure on the behavior of hydrideable metals and metal alloys. Pd alloy foils of nominal 5 and 9 at% Cr, Ni, and Co, were loaded with tritium, and stored for ~1 year in static storage. One sample (Pd-4.8 at% Ni) was subsequently stored for an additional ~3 years. Isotherms were determined following storage periods to study the tritium induced changes caused by tritium decay. Typical effects such as plateau pressure depression and heel formation were noted. The materials proved to be unusually sensitive to the isotherm determination process and decay effects were partially reversed, or “healed”. The Pd-4.8wt%Ni sample was removed from its storage unit, whereupon it was found to have turned into powder, and further studied with additional techniques elsewhere.