ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE releases $56.7M in second round of Palisades loan funding
Energy Secretary Chris Wright announced this week the release of the second part of Holtec’s loan disbursement for the Palisades nuclear plant restart plans in Michigan.
David Carpenter, Michael Ames, Guiqiu Zheng, Gordon Kohse, Lin-wen Hu
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 549-554
Technical Paper | doi.org/10.1080/15361055.2017.1291040
Articles are hosted by Taylor and Francis Online.
The MIT Nuclear Reactor Laboratory (NRL) has irradiated lithium-beryllium fluoride (flibe) salt as part of an on-going U.S. Department of Energy-funded Integrated Research Project to develop a Fluoride Salt High-Temperature Reactor (FHR). As part of this project, the NRL has carried out two irradiations of FHR materials in static flibe at 700°C in the MIT Research Reactor. These irradiations marked the start of a program evaluating the tritium production and release from the fluoride salt system at high temperature; in particular, there is interest in the evolution of tritium from the salt into solid materials and cover gasses. This paper describes the experience gained from the irradiation of flibe with respect to the detection of tritium. It covers the development of techniques for monitoring the evolution of tritium from the salt during irradiation and the factors particular to the FHR system that influence this process, including the radiolytic production and release of volatile fluorine and fluoride products as a function of temperature. In addition, it discusses the measurement of tritium partitioning between the different materials in the experiment due to the confluence of diffusion, adsorption, and chemical and radiolytic reactions.