ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
Kim Burns, Ed Love, Monte Elmore
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 544-548
Technical Paper | doi.org/10.1080/15361055.2017.1291038
Articles are hosted by Taylor and Francis Online.
Currently there are large uncertainties associated with the source of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, all sources of tritium in the RCS of a PWR must be understood theoretically. One potential source of tritium in the RCS is due to tritium production in secondary sources. Neutron sources provide a flux of neutrons that are used to support reactor startup. Primary startup neutron source rods made of 252Cf are inserted into the reactor during the first cycle of a new nuclear reactor. The primary neutron sources are used to produce enough neutrons through spontaneous fission to create a sufficient neutron flux to be seen by the ex-core neutron detectors and facilitate reactor startup. Antimony-Beryllium secondary startup neutron sources are also inserted in the first reactor cycle to provide a neutron source for startups in future cycles. The Beryllium in the secondary sources is a source of tritium when irradiated in a neutron flux. This paper will discuss tritium produced within the secondary sources.