ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Kim Burns, Ed Love, Monte Elmore
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 544-548
Technical Paper | doi.org/10.1080/15361055.2017.1291038
Articles are hosted by Taylor and Francis Online.
Currently there are large uncertainties associated with the source of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, all sources of tritium in the RCS of a PWR must be understood theoretically. One potential source of tritium in the RCS is due to tritium production in secondary sources. Neutron sources provide a flux of neutrons that are used to support reactor startup. Primary startup neutron source rods made of 252Cf are inserted into the reactor during the first cycle of a new nuclear reactor. The primary neutron sources are used to produce enough neutrons through spontaneous fission to create a sufficient neutron flux to be seen by the ex-core neutron detectors and facilitate reactor startup. Antimony-Beryllium secondary startup neutron sources are also inserted in the first reactor cycle to provide a neutron source for startups in future cycles. The Beryllium in the secondary sources is a source of tritium when irradiated in a neutron flux. This paper will discuss tritium produced within the secondary sources.