ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Kim Burns, Ed Love, Monte Elmore
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 544-548
Technical Paper | doi.org/10.1080/15361055.2017.1291038
Articles are hosted by Taylor and Francis Online.
Currently there are large uncertainties associated with the source of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, all sources of tritium in the RCS of a PWR must be understood theoretically. One potential source of tritium in the RCS is due to tritium production in secondary sources. Neutron sources provide a flux of neutrons that are used to support reactor startup. Primary startup neutron source rods made of 252Cf are inserted into the reactor during the first cycle of a new nuclear reactor. The primary neutron sources are used to produce enough neutrons through spontaneous fission to create a sufficient neutron flux to be seen by the ex-core neutron detectors and facilitate reactor startup. Antimony-Beryllium secondary startup neutron sources are also inserted in the first reactor cycle to provide a neutron source for startups in future cycles. The Beryllium in the secondary sources is a source of tritium when irradiated in a neutron flux. This paper will discuss tritium produced within the secondary sources.