ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Cape Fear CC expands nuclear technology program
Cape Fear Community College (CFCC) in Wilmington, N.C., has appointed Kelli Davis its first Nuclear Technology program director. Davis has nearly 20 years of experience in nuclear power, including roles in chemistry, operations, and environmental supervision.
Michiko Ahn Furudate, Seungyon Cho
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 514-519
Technical Paper | doi.org/10.1080/15361055.2017.1293417
Articles are hosted by Taylor and Francis Online.
The equilibrium chemical compositions of purge gas at the outlet of the Test Blanket Module in Helium Cooled Ceramic Reflector (HCCR) Test Blanket System are studied. Mole fractions of H, T, O, H2, HT, T2, H2O, HTO, and T2O in the equilibrium state are calculated by a Gibbs free energy minimization method starting from the initial state of H2/HTO mixture. The standard Gibbs free energy for tritium species obtained by the density functional theory is used in the calculations. The tritium recovery rates in the form of HT, T2, HTO and T2O are estimated from the equilibrium chemical compositions obtained in the calculations. The effects of H2 concentration in the purge gas on the tritium recovery process are also investigated by parametric study with variations of purge gas flow rate and volume ratio of hydrogen to helium in the purge gas.