ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Michiko Ahn Furudate, Seungyon Cho
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 514-519
Technical Paper | doi.org/10.1080/15361055.2017.1293417
Articles are hosted by Taylor and Francis Online.
The equilibrium chemical compositions of purge gas at the outlet of the Test Blanket Module in Helium Cooled Ceramic Reflector (HCCR) Test Blanket System are studied. Mole fractions of H, T, O, H2, HT, T2, H2O, HTO, and T2O in the equilibrium state are calculated by a Gibbs free energy minimization method starting from the initial state of H2/HTO mixture. The standard Gibbs free energy for tritium species obtained by the density functional theory is used in the calculations. The tritium recovery rates in the form of HT, T2, HTO and T2O are estimated from the equilibrium chemical compositions obtained in the calculations. The effects of H2 concentration in the purge gas on the tritium recovery process are also investigated by parametric study with variations of purge gas flow rate and volume ratio of hydrogen to helium in the purge gas.