ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Y. Yamasaki, S. Fukada, K. Hiyane, K. Katayama
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 501-506
Technical Paper | doi.org/10.1080/15361055.2017.1291028
Articles are hosted by Taylor and Francis Online.
In order to make proof of the recovery of hydrogen isotopes from a liquid lithium (Li) blanket, we experimented the recovery of deuterium (D) dissolved in Li by means of yttrium (Y) metal at 300°C. In the experiment, 160 wppm D dissolved in Li was removed down to 1 wppm by means of the Y trap maintained at 300°C under fluidized Li conditions. The ratio of the final-state D concentration dissolved in Li to the initial one is defined as a removal efficiency, and the removal efficiency was found to be in proportion to the D concentration remained in Li. In addition, judging from its dependence on D concentration remained in Li, it was found that the removal efficiency is well consistent with the secondary-order reaction process and the removal efficiency was correlated to a function of contact time.