ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Fernando R. Urgorri, Carlos Moreno, Elisabetta Carella, Jesús Castellanos, Alessandro Del Nevo, Ángel Ibarra
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 444-449
Technical Note | doi.org/10.1080/15361055.2016.1273712
Articles are hosted by Taylor and Francis Online.
The Water Cooled Lithium Lead (WCLL) blanket is one of the four breeder blanket technologies under consideration within the framework of the EUROfusion Consortium activities. The aim of this work is to develop a preliminary model that can track tritium concentration and tritium fluxes along each part of the WCLL blanket and its ancillary systems at any time.
Because of tritium’s nature, the phenomena of diffusion, dissociation, recombination and solubilization have been taken into account when describing the tritium behavior inside the lead-lithium channels, the structural materials and the water coolant circuits. The simulations have been performed using the object oriented modeling software EcosimPro.
Results have been obtained for the pulsed generation scenario of the European demonstration power plant (DEMO). The tritium inventory in every part of the blanket has been computed. Permeation rates have been calculated as well allowing to know how much tritium ends up in the coolant system and how much remains in the liquid metal. The amount of tritium extracted from the lead-lithium loop has been also obtained. All this information allows having a global perspective of tritium behavior all over the blanket at any time.
The model provides valuable information for the design of the WCLL blanket. More complex upgrades are planned to be implemented based on this model in future stages of the EUROfusion project.