ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Anthony Busigin
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 438-443
Technical Note | doi.org/10.1080/15361055.2017.1293411
Articles are hosted by Taylor and Francis Online.
Rigorous and accurate simulation of Liquid Phase Catalytic Exchange (LPCE) is required for water detritiation process design and analysis. The Two-Fluid model simulates exchange between gas and liquid using an overall mass transfer coefficient model. The Three-Fluid model simulates liquid/vapor and vapor/gas mass transfer explicitly with separate mass transfer coefficients. Both Two-Fluid and Three-Fluid models are presented. The Two-Fluid model combines liquid and vapor flow, resulting in accuracy close to the more rigorous Three-Fluid model. Mass transfer coefficients are estimated from Maxwell-Stefan theory of multicomponent diffusion across films at the liquid/vapor and catalyst interfaces.