ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Melissa Golyski
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 422-425
Technical Note | doi.org/10.1080/15361055.2017.1293413
Articles are hosted by Taylor and Francis Online.
The high contamination potential of the release of radioactive tritium facilitates the demand for and development of a stringent and comprehensive approach to operational maintenance of tritium systems. Prompt and efficient maintenance is necessary to ensure the accepted operational safety basis is adhered to and a continued safe state of operation is achieved. This will help to mitigate and avoid potential hazards that result from a tritium release to the public and facility personnel. Because of the hazards associated with a release of tritium contamination the process systems are in large kept within a series of inerted glovebox environments that must be maintained to keep structural integrity. The nature of a tritium release from a glovebox could have significant consequences for the general public as well as for personnel. As such, the maintenance philosophy is developed to help facilitate operations in the adherence to the facility’s safety code of conduct.
To effectively facilitate the safe operation goals mentioned a well-defined maintenance philosophy has been developed that encompasses routine and non-routine maintenance activities. Examples of routine activities include preventative maintenance such as line-break inspections, helium leak tests to ensure components are leak tight, weld inspections and overall surveillance testing of essential components and infrastructure. Predictive maintenance also falls into this category. Predictive maintenance activities are developed over time in response to non-routine maintenance work. Non-routine maintenance or corrective maintenance activities are performed in response to a specific failure or to resolve a particular inadequacy in performance of tritium systems. When corrective maintenance is performed trends are often studied and more predictive maintenance can be scheduled to compensate for more routine failures.
This technical note will identify key operational maintenance considerations which when applied, will ensure that tritium handling systems are operated safely.