ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Paul Korinko, Richard Wyrwas, William Spencer, Brent Peters, Edward Stein, Dale Hitchcock
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 403-409
Technical Note | doi.org/10.1080/15361055.2017.1293415
Articles are hosted by Taylor and Francis Online.
Tritium is highly reactive with many materials. It is adsorbed onto and absorbed through the surface of containment vessels subsequently modifying the contained gas composition by isotopic exchange and catalytic reactions with surface elements and adsorbed gas species. Savannah River Tritium Enterprise (SRTE) uses a proprietary surface treatment that is intended to render the surface inert. Unfortunately, this process has not proven to be sufficiently robust for containing tritium gas standards. SRTE has funded a project that will explore the effects of electropolishing and vacuum and oxidizing thermal treatments on surface passivation of stainless steel (SS). Herein, a statistically designed series of experiments will be discussed that will inform optimized parameters for acid composition, current density, and other electrochemical process variables for the passivation of SS. The surfaces were analyzed using Laser Induced Breakdown Spectroscopy (LIBS), Auger Electron Spectroscopy (AES), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM). Novel techniques to characterize the passive layers are also being developed. In future experiments, gas sample bottles will be loaded with protium and deuterium to determine the relative exchange characteristics of the treated vessels. Previous work has indicated that if little protium ingrowth occurs or few contaminant species form, e.g., methane or ammonia, and little hydrogen exchange occurs in a protium and deuterium gas mixture the treatment is suitable for maintaining the tritium stability. This statement is not intended to imply that tritium, deuterium, protium mixes will not exchange, only that these results are useful as a screening tool prior to tritium exposure.