ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Paul Korinko, Richard Wyrwas, William Spencer, Brent Peters, Edward Stein, Dale Hitchcock
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 403-409
Technical Note | doi.org/10.1080/15361055.2017.1293415
Articles are hosted by Taylor and Francis Online.
Tritium is highly reactive with many materials. It is adsorbed onto and absorbed through the surface of containment vessels subsequently modifying the contained gas composition by isotopic exchange and catalytic reactions with surface elements and adsorbed gas species. Savannah River Tritium Enterprise (SRTE) uses a proprietary surface treatment that is intended to render the surface inert. Unfortunately, this process has not proven to be sufficiently robust for containing tritium gas standards. SRTE has funded a project that will explore the effects of electropolishing and vacuum and oxidizing thermal treatments on surface passivation of stainless steel (SS). Herein, a statistically designed series of experiments will be discussed that will inform optimized parameters for acid composition, current density, and other electrochemical process variables for the passivation of SS. The surfaces were analyzed using Laser Induced Breakdown Spectroscopy (LIBS), Auger Electron Spectroscopy (AES), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM). Novel techniques to characterize the passive layers are also being developed. In future experiments, gas sample bottles will be loaded with protium and deuterium to determine the relative exchange characteristics of the treated vessels. Previous work has indicated that if little protium ingrowth occurs or few contaminant species form, e.g., methane or ammonia, and little hydrogen exchange occurs in a protium and deuterium gas mixture the treatment is suitable for maintaining the tritium stability. This statement is not intended to imply that tritium, deuterium, protium mixes will not exchange, only that these results are useful as a screening tool prior to tritium exposure.