ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Priyanka Brahmbhatt, Amit Sircar, Rudreksh Patel, E. RajendraKumar, Sadhana Mohan, Kalyan Bhanja
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 391-396
Technical Note | doi.org/10.1080/15361055.2017.1289580
Articles are hosted by Taylor and Francis Online.
The Indian Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) is to be installed in one half of equatorial port #2 for testing in ITER machine. Liquid Pb-Li and solid Li2TiO3 are the tritium breeder materials in LLCB TBM. Tritium permeates through structural materials in particular at higher temperatures, which is a major operational and safety concern. Therefore, tritium flows in different locations of ITER Tokamak complex have been estimated.
Tritium transport from LLCB TBM and its ancillary systems into process rooms has been studied and analyzed in this work. A steady state diffusion limited permeation model neglecting surface effects has been used for the analysis. Tritium permeation to the Vacuum Vessel, Pipe Forest Area, Port Cell, Pipe Chase Area, Tokamak Cooling Water System Vault Annex (TCWS-VA) and Tritium Process Room in L-2 level has been estimated.
The requirement to be fulfilled in each equatorial port cell is that the tritium concentration in the port cell during maintenance operations should be below the admissible limit for human access (regulatory maximum allowable value < 1 DAC = 3.4 × 105 Bq/m3, Derived Air concentration). The presence of the Detritiation System (DS) in the Port cell has to be taken into account. This admissible limit for human access has to be reached in a sufficiently short time (target = 12 h) after plasma shutdown. Additional release during maintenance and radiological zoning with recommended <10 μSv/h need to be considered. Management of concentration of permeated tritium in different locations considering above requirement has also been discussed in this paper.