ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Kevin R. O’Kula, David C. Thoman, Selina K. Guardiano, Eric P. Hope
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 381-390
Technical Paper | doi.org/10.1080/15361055.2017.1288437
Articles are hosted by Taylor and Francis Online.
A comparison of three United States (U.S.) Department of Energy (DOE) Standard DOE-STD-3009–2014 dispersion modeling protocol options has been performed assuming a ground-level release of tritium oxide source term. The options are characterized by differing sets of assumptions and inputs that allow incorporating greater user flexibility and realism into the modeling and subsequent analysis. The three options used to evaluate atmospheric dispersion include: (1) Use of U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide 1.145; (2) Application of a DOE-approved toolbox code and application of conservative input parameters; and (3) Use of site-specific methods and parameters as defined in a site/facility specific DOE-approved modeling protocol.
Option 1 dose results are the lowest of the three sets of results at close-in distances, but are the highest for distances beyond approximately 3,000 m, reflecting the distance-dependent NRC plume meander model. Option 1 doses also reflect a lower minimum wind speed and consideration of G stability. Option 3 dose results are consistently lower than the Option 2 results by a factor of 2.2 reflecting the higher vertical dispersion values calculated from the crediting site-specific surface roughness. Option 2 and 3 results are obtained with DOE Central Registry computer software reflect default parameters in Option 2, and more site-specific input with Option 3. An averaging time of two hours leads to dose results that are lower than those obtained with an averaging time of three minutes by a factor of 2.5 due to the higher crosswind dispersion parameter values. This effect is due to the larger crosswind dimension of the plume with increasing averaging time using the Gifford meander model. A sensitivity case study indicates appreciable differences are observed between results obtained with the NRC Regulatory Guide 1.145 temperature difference (ΔT) method and those with U.S. Environmental Protection Agency (EPA) EPA-454/R-99–005 methodology for stability class categorization. A second sensitivity case suggests that crediting deposition, hold-up or other retention of tritium may be difficult to defend from a regulatory perspective, recognizing region of transport characteristics and accounting for reemission phenomenon. In terms of recommending one of the three options for modeling tritium releases in Documented Safety Analysis (DSA) applications, the Option 2 approach (Application of a DOE-approved toolbox code and conservative input parameters – without crediting tritium deposition) is the simplest model for source to receptor distances of 500 m or greater. Option 3 requires additional resource commitment and DOE authority approval, but may provide regulatory relief for certain accident scenarios. These recommendations apply to deterministic DSA dispersion analysis but are not extended to best estimate, realistic analyses such as those supporting probabilistic safety analyses.