ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Robin Größle, Alexander Kraus, Sebastian Mirz, Sebastian Wozniewski
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 369-374
Technical Paper | doi.org/10.1080/15361055.2017.1291237
Articles are hosted by Taylor and Francis Online.
Fusion facilities like ITER and DEMO will circulate several kilograms tritium and deuterium per day in their fuel cycle. For the separation of the hydrogen isotopologues the Isotope Separation System (ISS), based on cryogenic distillation, was developed at Tritium Laboratory Karlsruhe (TLK). One challenge is to find and develop an in situ and real time method to analyse the isotopologic composition of the column content. Calibration tests with IR absorption spectroscopy (FTIR) with chemically equilibrated samples have been performed at the Tritium absorption IR Spectroscopy Experiment (TApIR). From this previous work and from literature, it is known that the dependence between IR absorbance and the concentrations is non-linear. This makes it impossible to extrapolate the calibration from equilibrium to non-equilibrium samples. This work shows a full D2, H2, and HD calibration with samples in and off the high temperature. This enables us now to measure composition of inactive liquid hydrogen samples with an accuracy of better than 5%. In addition, one of the main challenges on the way to a calibration with tritiated mixtures is shown, the IR absorbance at molecular dimers, which tremendously increases the complexity of IR absorption spectra.