ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Robin Größle, Alexander Kraus, Sebastian Mirz, Sebastian Wozniewski
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 369-374
Technical Paper | doi.org/10.1080/15361055.2017.1291237
Articles are hosted by Taylor and Francis Online.
Fusion facilities like ITER and DEMO will circulate several kilograms tritium and deuterium per day in their fuel cycle. For the separation of the hydrogen isotopologues the Isotope Separation System (ISS), based on cryogenic distillation, was developed at Tritium Laboratory Karlsruhe (TLK). One challenge is to find and develop an in situ and real time method to analyse the isotopologic composition of the column content. Calibration tests with IR absorption spectroscopy (FTIR) with chemically equilibrated samples have been performed at the Tritium absorption IR Spectroscopy Experiment (TApIR). From this previous work and from literature, it is known that the dependence between IR absorbance and the concentrations is non-linear. This makes it impossible to extrapolate the calibration from equilibrium to non-equilibrium samples. This work shows a full D2, H2, and HD calibration with samples in and off the high temperature. This enables us now to measure composition of inactive liquid hydrogen samples with an accuracy of better than 5%. In addition, one of the main challenges on the way to a calibration with tritiated mixtures is shown, the IR absorbance at molecular dimers, which tremendously increases the complexity of IR absorption spectra.