ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A. V. Ovcharov
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 333-338
Technical Paper | doi.org/10.1080/15361055.2016.1273693
Articles are hosted by Taylor and Francis Online.
Separation factors for ideal gas phase isotopic exchange reactions between water vapor and hydrogen were calculated for deuterium-protium exchange in the presence of trace amounts of tritium using adiabatic correction factors calculated by Bardo and Wolfsberg. The results obtained support the conclusions made by Bardo and later by Rolston that the application of adiabatic correction factors leads to slightly lower and more precise values of equilibrium constants or separation factors in comparison to separation factors straightforwardly calculated from the isotopic partition function ratios published by Bron, Chang and Wolfsberg. The difference for protium-trace tritium exchange is relatively low, at 333 K it amounts to 2.2%. Comparison with published experimental data on tritium exchange in the low deuterium concentration limit shows that the corrected values better reproduce experiment at least at temperatures below 383 K confirming earlier conclusions made for protium-deuterium exchange. Results are given in the form of 2D polynomial fits over wide range of deuterium concentration and temperature that is useful for the application of them in equation-oriented process modeling systems for the modeling of CECE process.