ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Y. Miho, S. Fukada, T. Motomura, J. Mizutani, S. Hirano, M. Arimoto, T. Takeuchi
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 326-332
Technical Paper | doi.org/10.1080/15361055.2017.1291235
Articles are hosted by Taylor and Francis Online.
Water distillation packed with materials having adsorption ability is proposed for wastewater detritiation, and behavior of HTO depletion or enrichment is experimentally investigated. It is proved that the apparent volatility ratio of H2O-to-HTO is increased by an isotopic effect on adsorption under a steady-state operation. Danckwerts’ surface renewal model is applied to explain the T enrichment process in a lab-scale water distillation column. The effect is estimated in terms of an adsorption enhancement factor included in the T separation factor, εHT,ad, which depends on the kinds of adsorbents and liquid-vapor flow conditions. The value of the enhancement factor is also confirmed εHT,ad = 1.02 in a comparatively large-scale distillation operation packed with Sulzer packing or Raschig ring coated with zeolite adsorbent. A large-scale distillation tower can be designed to detritiate radioactive wastewater generated in Fukushima’s Daiichi NPS based on the present experimental results.