ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
David W. James, Gregg A. Morgan
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 321-325
Technical Paper | doi.org/10.1080/15361055.2017.1291245
Articles are hosted by Taylor and Francis Online.
Various getter materials are used in the processing of hydrogen isotopes and associated impurities. SAES® ST198 is a zirconium-iron alloy that is typically used for the removal of low levels of hydrogen isotopes from a process gas stream. However, numerous impurities may be present in process gas streams and some of these impurities may have a deleterious effect on the hydrogen absorption capabilities of ST198.
A series of experiments were completed to determine the effects of various impurities on the hydrogen gettering ability of ST198 as a function of the bed operating temperature. Changes in hydrogen getter performance were tracked using the analysis of Residual Gas Analyzer data. Baseline conditions of 0.1% hydrogen within a nitrogen rich stream were evaluated at both 350°C and ambient temperature conditions (24°C). Various concentrations of impurities were also explored to determine the effects on the hydrogen gettering of ST198. It has been determined that one benefit of ST198 is that it shows no appreciable interaction with nitrogen at temperatures lower than 425°C. However, gas impurities of carbon monoxide, methane, and ammonia were shown in this work to have an effect on the hydrogen gettering abilities of ST198.
This paper presents findings relating to the evaluation of the effect of carbon monoxide, ammonia, and methane impurities on the hydrogen gettering ability of the ST198. Lower operating temperature conditions made the ST198 getter bed more susceptible to deactivation in the presence of impurities. In the event that the studied impurities exist in the process gas stream, the ST198 material could possibly become deactivated towards hydrogen isotope absorption at lower operating temperatures.