ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Jae-Uk Lee, Min Ho Chang, Sei-Hun Yun, Jin-Kuk Ha, Euy Soo Lee, In-Beum Lee
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 296-304
Technical Paper | doi.org/10.1080/15361055.2017.1291027
Articles are hosted by Taylor and Francis Online.
A Tokamak has startup and shutdown periods during which demand specifications differ from those during steady fueling operation. These periods can affect the required number of getter beds of the Storage and Delivery System. In this study, we developed a mathematical model based on the State Task Network, and an algorithm that considers daily operation which includes the period from startup to shutdown to find the optimal number of getter beds. This algorithm can estimate the optimal initial inventory of tritium or deuterium in a getter bed to compensate for fuel consumption until shutdown. The inductive operation mode of the Tokamak is analyzed to illustrate the applicability of the model and algorithm.