ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
I. W. Croudace, P. E. Warwick, R. Marsh
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 290-295
Technical Paper | doi.org/10.1080/15361055.2017.1293450
Articles are hosted by Taylor and Francis Online.
Tritium is ubiquitous in and around nuclear plants, being formed via neutron capture by 2H, 6Li, 10B and 14N and via ternary fission. The highly mobile nature of 3H species results in widespread distribution of the radionuclide. Predictive modeling of 3H activity concentrations is challenging and direct measurement of 3H activities in materials is the preferred approach to underpin waste and environmental assessments. For well over a decade, the UK nuclear industry has engaged in a significant program of site decommissioning of its first generation reactors. This has resulted in a high demand for the rapid characterization of 3H in a diverse range of matrices, including concretes, metals, plastics, sludges, resins, soils and biota. To support such assessments, it has been necessary to develop dedicated instrumentation in parallel with robust radioanalytical methodologies; namely a multi-tube furnace and a high-capacity, closed (pressurized) oxygen combustion system. Data are presented on the development and validation of these instruments, designed specifically to enable the quantitative extraction of 3H (and other volatile radionuclides) from diverse sample types. Furthermore the furnace system has been employed as a tool to gain insights into the 3H association in decommissioning and environmental matrices exposed to 3H arising from nuclear power plant operations through tritium evolution with temperature profiling. The impact of the chemical speciation of 3H on analytical strategy is discussed. A major benefit of the multi-sample furnace is its ease of use and applicability to 3H determination in virtually any sample type. The complementary HBO2 oxygen combustion system has been developed for the quantitative oxidation of organic-rich samples (e.g. wood, plastic, oil, biota) and analytical data prove its effectiveness.