ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
C. Fagan, M. Sharpe, W. T. Shmayda, W. U. Schröder
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 275-280
Technical Paper | doi.org/10.1080/15361055.2017.1293456
Articles are hosted by Taylor and Francis Online.
The concentration of tritium in the adsorbed water layer on stainless-steel type 316 is notably higher than that present in the metal lattice. The absorbed waters play a key role in the migration of tritium into the metal. In this work, stainless-steel (type 316) surfaces were subjected to various pretreatments designed to alter the surface in order to probe the relation between surface conditions and total tritium inventories. These pretreatments included electropolishing and soaking in nitric-acid baths. Stainless-steel samples were loaded with tritium by exposure to a deuterium–tritium gas mixture at 25°C for 24 h. Total tritium inventories were measured using temperature-programmed desorption. The thermal desorption data show a reduction of 65% in total tritium inventory by electropolishing stainless-steel surfaces as compared to unmodified samples. It is also shown that treating the surfaces with nitric acid resulted in an increase in the tritium content by ~200%.