ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
February 2025
Fusion Science and Technology
Latest News
Noted nuclear scientist passes away
The government of South Africa has announced the passing of Senamile Masango, the country’s first black female nuclear scientist. The 37 year old, who many South Africans thought of as the “queen of science,” died on February 9 from undisclosed causes. Deputy President Paul Mashatile described Masango as “a beacon of hope for many young people, especially women.”
D. C. Bufford, C. S. Snow, K. Hattar
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 268-274
Technical Paper | doi.org/10.1080/15361055.2016.1273700
Articles are hosted by Taylor and Francis Online.
We investigated the microstructural response of molybdenum, with and without prior exposure to gaseous deuterium, during helium irradiation and subsequent annealing. Ion irradiations and annealing experiments were performed in situ in a transmission electron microscope, enabling real time observation of the microstructural evolution. Cavities approximately 0.5 nm in diameter were formed in deuterium-exposed molybdenum at a fluence of 1.7 × 1015 helium cm−2, but did not grow appreciably after increasing the fluence by two orders of magnitude or after brief room temperature aging. Similar cavities were not apparent in pristine molybdenum. Larger cavities appeared in both samples during in situ annealing to 1063 K, without any clear differences between the two samples. The evolving cavity morphologies are discussed in terms of defect production, microstructure, and sample geometry.