ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Kazunari Katayama, Youji Someya, Kenji Tobita, Hirofumi Nakamura, Hisashi Tanigawa, Makoto Nakamura, Nobuyuki Asakura, Kazuo Hoshino, Takumi Chikada, Yuji Hatano, Satoshi Fukada
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 261-267
Technical Paper | doi.org/10.1080/15361055.2017.1288423
Articles are hosted by Taylor and Francis Online.
The approximate estimation of tritium permeation rate under the acceptable assumption from a safety point of view is surely useful to progress the design activities for a fusion DEMO reactor. Tritium permeation rates in the blanket and the divertor were estimated by the simplified evaluation model under the recent DEMO conditions in the water-cooled blanket with solid breeder as a first step. Plasma driven permeation rates in tungsten wall were calculated by applying Doyle & Brice model and gas driven permeation rates in F82H were calculated for hydrogen-tritium two-component system. In the representative recent DEMO condition, the following tritium permeation\rates were obtained, 1.8 g/day in the blanket first wall, 2.3 g/day in the blanket tritium breeding region and 1.6 g/day in the divertor. Total tritium permeation rate into the cooling water was estimated to be 5.7 g/day.