ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Kazunari Katayama, Youji Someya, Kenji Tobita, Hirofumi Nakamura, Hisashi Tanigawa, Makoto Nakamura, Nobuyuki Asakura, Kazuo Hoshino, Takumi Chikada, Yuji Hatano, Satoshi Fukada
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 261-267
Technical Paper | doi.org/10.1080/15361055.2017.1288423
Articles are hosted by Taylor and Francis Online.
The approximate estimation of tritium permeation rate under the acceptable assumption from a safety point of view is surely useful to progress the design activities for a fusion DEMO reactor. Tritium permeation rates in the blanket and the divertor were estimated by the simplified evaluation model under the recent DEMO conditions in the water-cooled blanket with solid breeder as a first step. Plasma driven permeation rates in tungsten wall were calculated by applying Doyle & Brice model and gas driven permeation rates in F82H were calculated for hydrogen-tritium two-component system. In the representative recent DEMO condition, the following tritium permeation\rates were obtained, 1.8 g/day in the blanket first wall, 2.3 g/day in the blanket tritium breeding region and 1.6 g/day in the divertor. Total tritium permeation rate into the cooling water was estimated to be 5.7 g/day.