ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
H. A. Boniface, N. V. Gnanapragasam, D. K. Ryland, S. Suppiah, A. Perevezentsev
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 241-245
Technical Paper | doi.org/10.1080/15361055.2017.1290970
Articles are hosted by Taylor and Francis Online.
The Water Detritiation System (WDS) designed for ITER is based on the combined electrolysis and catalytic exchange(CECE) process to ensure the emission of tritium to the environment is maintained below very strict limits. The CECE process is one of the processes for tritium removal that CNL (Canadian Nuclear Laboratories, formerly Atomic Energy of Canada Ltd.) has studied, developed and successfully demonstrated. In this work, CNL evaluated ITER’s design conditions of the exchange column and the electrolyser – the two key components of the CECE process (and the ITER WDS system) – to assess the effectiveness of tritium removal and investigate options to improve it. The evaluation was done using CNL’s CECE process simulation according to a protocol set out by ITER. Initially, calibration (benchmarking) of CNL’s hydrogen-water exchange column model was performed with a standard data set for a specified column to determine modeling parameters that resulted in a good match with the tritium concentration data. The model was then applied (with the same parameters) to the current WDS design. Some optimized conditions for the CECE process that could improve performance of the WDS to meet its design criteria were determined. The details of some of these assessments are presented here with particular attention to the WDS case where the feed water contains high levels of deuterium.