ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ion Cristescu, A. Bükki-Deme, R. Carr, N. Gramlich, R. Groessle, C. Melzer, P. Schaefer, Stefan Welte
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 225-230
Technical Paper | doi.org/10.1080/15361055.2017.1288057
Articles are hosted by Taylor and Francis Online.
The design of ITER tritium processing systems will benefit from experimental data and process validation based on experimental facilities that are ITER scale relevant. Several rigs and experimental facilities have been enhanced and developed at the Tritium Laboratory Karlsruhe (TLK) in order to explore a wide range of envisaged scenarios of tritium plant systems, such as the Water Detritiation System (WDS), Isotope Separation System (ISS) and highly tritiated water processing. In the last few years, detailed experimental investigations and process modeling have been conducted in relation to the Combined Electrolysis Catalytic Exchange and Isotope Separation (CECE-ISS) systems which were focused on evaluation of the impact of deuterium build-up and accumulation in the CECE system. An enhanced configuration of the ITER WDS has been developed, that allows mitigation of the effects due to deuterium accumulation and reduction of the tritium inventory within the electrolysis system. In addition, the benefits concerning the interface between the WDS and ISS are presented. Significant efforts have been made to enhance the simulation tool TRIMO++ that was calibrated against the experimental results collected from the experimental rigs. The new features of the simulation tools are introduced as well.
The main references of a new method aiming to mitigate the tritium permeation from the tritium processes streams into the non-contaminated streams such as steam generators are introduced. The reference configuration of first phase of the experimental rigs and the preliminary experimental activities are presented as well.