ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
F. Andritsos, M. Zucchetti
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 973-977
Tritium Technology, Safety, Environment, and Remote Maintenance | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40280
Articles are hosted by Taylor and Francis Online.
In a fusion reactor, the neutron flux will cause activation of the plasma chamber. The volumetric decay heat associated with this activation is removed, during normal operation, by forced flow cooling circuits. Its effects under post accidental conditions are a matter of concern since they can cause temperatures higher than allowed leading to the degradation of the properties and even structural failure of all or some of the reactor components. Here, an overview of the post accidental temperature transients, performed under the European Fusion Program for a variety of tokamak devices, is presented. The modelling activities, including the neutronic, activation and thermal part, are described. The latest results concerning the SEAFP reactor study are given. Generally, the most dangerous temperature peak happens long after the accident (typically 1 – 2 months) thus allowing for a considerable margin for intervention. Appropriate design of the region outwards from the vacuum vessel can provide the necessary thermal links so as not to compromise the structural stability of the containment even in the envelope conditions of complete and permanent loss of every form of active cooling.