ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
John D. Sethian, Robert H. Lehmberg, Carl J. Pawley, Alban V. Deniz, Stephen E. Bodner, Edgar A. McLean, Mark S. Pronko, John Hardgrove, Malcolm W. McGeoch, Kent A. Gerber, Stephen P. Obenschain, John A. Stamper, Thomas H. Lehecka
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 717-721
Future Inertial Confinement Fusion Facility | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40241
Articles are hosted by Taylor and Francis Online.
Nike is a large angularly multiplexed Krypton-Fluoride (KrF) laser under development at the Naval Research Laboratory. It is designed to explore the technical and physics issues of direct drive laser fusion1. When completed, Nike will deliver 2–3 kJ of 248 nm light in a 4 nsec pulse with intensities exceeding 2 × 10 14W/cm2 onto a planar target. Spatially and temporally incoherent light will be used to reduce the ablation pressure nonuniformities to less than 2% in the target focal plane. The Nike laser consists of a commercial oscillator/amplifier front end, an array of gas discharge amplifiers, two electron beam pumped amplifiers (one with a 20 × 20 cm2 aperture, the other with a 60 × 60 cm2 aperture) and the optics required to relay, encode, and decode the beam. Approximately 90% of the system is operational and currently undergoing tests: the system is complete through the 20 cm amplifier, the 60 cm amplifier has completed all the necessary electron beam/pulsed power tests, and is currently being developed into a laser amplifier, and most of the optics have been installed. It is anticipated that Nike will be fully operational in the fall of 1994.