ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Satoshi Konishi, T. Nagasaki, T. Hayashi, K. Okuno
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 668-672
Plasma Fueling and Fuel Cycle | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40234
Articles are hosted by Taylor and Francis Online.
Behavior and improvement of the ZrCo based intermetallic materials for tritium recovery, storage and supply are studied. Compound ZrCo was found to be subject to disproportionation at high temperature under high hydrogen pressure to form ZrCo2 and ZrH2. This process is completely reversed by vacuum treatment at temperature above 500°C for several hours. Kinetics of the disproportionation was described to be similar to phase transition that have apparent incuvation time to take place. The logarithmic reaction rate constant was related to the reciprocal temperature. With some precautions drawn from the results, this reaction is not a problem in practice. For the application that needs prolonged supply of relatively high-pressure tritium, solid solution of ZrCo and HfCo was developed as an improvement of the material. Materials otained by arc melting with compoistion of Zr(1−x)HfxCo (0<x<0.5) exhibits single plateaus in pressure - composition isotherms when hydrogenated. Repeated hydrognation - dehydrogenation cycles did not generate separate ZrCo and HfCo phases. The equilibrium hydrogen pressure in the plateau regions are expressed as a functio of reciprocal temperature and increases with increasing HfCo contents. This material provides controlled equilibrium hydrogen pressure required for specific applications of tritium storage nad supply.