ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
D. Driemeyer, D. Bowers, J. Davis, D. Kubik, H. Mantz, M. McSmith, T. Rigney, C. Baxi, L. Sevier, M. Carelli, L. Green, D. Ruzic, D. Hayden, M. Gabler, J. Yuen
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 603-610
Divertor Experiment and Technology | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40223
Articles are hosted by Taylor and Francis Online.
One of the key challenges in designing the next generation tokamaks is the development of plasma facing components (PFC's) that can withstand the severe environmental conditions at the plasma edge. The most intensely loaded element of the PFC's is the divertor. The divertor must handle high fluxes of energetic plasma particles and electromagnetic radiation without excessive impurity build-up in the plasma core. It must also remove helium ash while recirculating a large fraction of the unburned hydrogen fuel so that vacuum pumping requirements are not excessive. The gas-dynamic mode of divertor operation proposed for ITER expands the divertor design window to include several alternate heat sink and armor materials that were not feasible for the previous high recycling divertor approach. In particular, beryllium armor can now be considered with copper, niobium or vanadium structural materials cooled by liquid metal or possibly helium in addition to water. This paper presents some of the results achieved under ongoing ITER Plasma Facing Components research and development tasks. The overall effort involves U.S. industry, universities and national laboratories and is directed towards developing and/or testing: (1) ductile beryllium and beryllium joining techniques; (2) prototype divertor component design, fabrication and testing; (3) fiber-reinforced composites for beryllium and carbon; (4) beryllium plasma spray processes; (5) compliant layers for PFC armor attachment; (6) sacrificial armor layers for the divertor end-plates; and (7) tritium permeation and inventory in proposed PFC materials and components. The paper focuses on work being conducted by the industrial support team consisting of McDonnell Douglas Aerospace, Ebasco, General Atomics, Rocketdyne, University of Illinois and Westinghouse.