ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
R. E. Kothmann, L. Green, M. D. Carelli, M. J. Manjoine, R. E. Wootton
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 551-557
Fusion Material and Plasma-Facing Component | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40215
Articles are hosted by Taylor and Francis Online.
Use of vanadium alloys is contemplated for the ITER blanket and guidance is needed to determine the extent of the data base for qualifying these alloys as structural material. A probabilistic methodology first employed in the fast breeder program is used to provide a preliminary assessment of the data base requirements. This methodology, which is applicable to any structural material, or in general to any design variable, determines the adequacy of the design by considering simultaneously all design affecting uncertainties, such as operational, nuclear, thermal-hydraulic, structural, geometric tolerances and material properties. In this study a thermal-mechanical calculational model of the ITER self cooled lithium blanket design was developed and the effect of design uncertainties on temperature (creep limited) and stress-strain (fatigue limited) were calculated. Based upon the current design, it was concluded that an uncertainty band of ± 30% on vanadium material properties is acceptable. Confirmatory irradiation data are however necessary.