ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
R. E. Kothmann, L. Green, M. D. Carelli, M. J. Manjoine, R. E. Wootton
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 551-557
Fusion Material and Plasma-Facing Component | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40215
Articles are hosted by Taylor and Francis Online.
Use of vanadium alloys is contemplated for the ITER blanket and guidance is needed to determine the extent of the data base for qualifying these alloys as structural material. A probabilistic methodology first employed in the fast breeder program is used to provide a preliminary assessment of the data base requirements. This methodology, which is applicable to any structural material, or in general to any design variable, determines the adequacy of the design by considering simultaneously all design affecting uncertainties, such as operational, nuclear, thermal-hydraulic, structural, geometric tolerances and material properties. In this study a thermal-mechanical calculational model of the ITER self cooled lithium blanket design was developed and the effect of design uncertainties on temperature (creep limited) and stress-strain (fatigue limited) were calculated. Based upon the current design, it was concluded that an uncertainty band of ± 30% on vanadium material properties is acceptable. Confirmatory irradiation data are however necessary.