ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
K. A. Niemer, J. G. Gilligan, C. D. Croessmann
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 546-550
Fusion Material and Plasma-Facing Component | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40214
Articles are hosted by Taylor and Francis Online.
The purpose of this research was to extend the theoretical and experimental knowledge of runaway electron damage-impact-bombardment on plasma facing components and materials in magnetic fusion devices. The emphasis of this work involved computational modeling and experimental studies to investigate runaway electron energy deposition and thermal response in plasma facing materials. The goals were: 1) to develop a computational model to study and analyze runaway election damage, 2) to characterize runaway electron parameters, and 3) to perform experiments to analyze runaway electron damage. These goals were accomplished by first assembling the PTA code package. PTA is a unique application of PATRAN, the Integrated TIGER Series (ITS), and ABAQUS for modeling high energy electron impact on magnetic fusion materials and components. The PTA code package provides a three-dimensional, time dependent, computational code package which predicts material response from runaway bombardment under most runaway conditions (i.e., electron energy, incident angle, energy density, and deposition time). As part of this research, PTA was used to study energy deposition and material response in several design applications, to analyze damaged material, and to analyze several experiments. Runaway electron characterization was determined through parametric studies, analysis of damaged materials, and analysis of experimental results. Characterization provided information on electron energy, incident angle, current, deposition time, and volume of material impacted by runaway electrons. Finally an experiment was performed on the Advanced Toroidal Facility (ATF) at Oak Ridge National Laboratory to study runaway electron damage. The experiment provided information on the runaway electron energy and current in ATF, as well as supplemented the existing experimental knowledge of runaway electron damage.