ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Applications open to women for 2025 IAEA fellowship program
The application period for the International Atomic Energy Agency’s Marie Sklodowska-Curie Fellowship Program (MSCFP) has opened. Women interested in studying nuclear-related subjects at the master’s degree level should apply by October 31, 2025.
More information on how to apply can be found here.
P.H. La Marche, J.L. Anderson, C.A. Gentile, R.J. Hawryluk, J. Hosea, M. Kalish, T. Kozub, H. Murray, A. Nagy, S. Raftopoulos, R.L. Rossmassier, R.A.P. Sissingh, J. Swanson, F. Tulipano, M. Viola, D.R. Voorhees, R.T. Walters, the TFTR Team
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 427-433
Magnetic Fusion Experiment | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40195
Articles are hosted by Taylor and Francis Online.
TFTR performance has surpassed many of the previous tokamak records. This has been made possible by the use of tritium as fuel for DT plasma discharges. Stable operations of tritium systems provide for safe, routine DT operation of TFTR. In the preparation for DT operation, in the commissioning of the tritium systems and in the operation of the Nuclear Facility several key lessons have been learned. They include: the facility must take the lead in interpreting the applicable regulations and orders and then seek regulator approval; the use of ultra high vacuum technology in tritium system design and construction simplifies and enhances operations and maintenance; and central facility control under a single supervisory position is crucial to safely orchestrate operational and maintenance activities.