ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. Hosea, J. H. Adler, P. Alling, C. Ancher, H. Anderson, J.L. Anderson,a) J.W. Anderson, V. Arunasalam, G. Ascione, D. Ashcroft, C.W. Barnes,a) G. Barnes, S. Batha,b) M.G. Bell, R. Bell, M. Bitter, W. Blanchard, N.L. Bretz, C. Brunkhorst, R. Budny, T. Burgess,c) H. Bush,e) C.E. Bush,c) R. Camp, M. Caorlin, H. Carnevale, S. Cauffman, Z. Chang,f) C.Z. Cheng, J. Chrzanowski, J. Collins, G. Coward, M. Cropper, D.S. Darrow, R. Daugert, J. DeLooper, H. Duong,h) L. Dudek, R. Durst,f) P.C. Efthimion, D. Ernst,d) J. Faunce, R. Fisher, R.J. Fonck,f) E, Fredd, E. Fredrickson, N. Fromm, G.Y. Fu, H.P. Furth, V. Garzotto, C. Gentile, G. Gettelfinger, J. Gilbert, J. Gioia, T. Golian, N. Gorelenkov,i) B. Grek, L.R. Grisham, G. Hammett, G.R. Hanson,c) R.J. Hawryluk, W. Heidbrink,j) H.W. Herrmann, K.W. Hill, H. Hsuan, A. Janos, D.L. Jassby, F.C. Jobes, D.W. Johnson, L.C. Johnson, J. Kamperschroer, J. Kesner,d) H. Kugel, S. Kwon,e) G. Labik, N.T. Lam,f) P.H. LaMarche, E. Lawson, B. LeBlanc, M. Leonard, J. Levine, F.M. Levinton,b) D. Loesser, D. Long, M.J. Loughlin,k) J. Machuzak,d) D.K. Mansfield, M. Marchlik,e) E. S. Marmar,d) R. Marsala, A. Martin, G. Martin, V. Mastrocola, E. Mazzucato, R. Majeski, M. Mauel,l) M.P. McCarthy, B. McCormack, D.C. McCune, K.M. McGuire, D.M. Meade, S.S. Medley, D.R. Mikkelsen, S.L. Milora,c) D. Mueller, M. Murakami,c) J.A. Murphy, A. Nagy, G.A. Navratil,l) R. Nazikian, R. Newman, T. Nishitani,m) M. Norris, T. O'Connor, M. Oldaker, J. Ongena,n) M. Osakabe,o) D.K. Owens, H. Park, W. Park, S.F. Paul, Yu.I. Pavlov,p) G. Pearson, F. Perkins, E. Perry, R. Persing, M. Petrov,q) C.K. Phillips, S. Pitcher,r) S. Popovichev,p) R. Pysher, A.L. Qualls,c) S. Raftopoulos, R. Ramakrishnan, A. Ramsey, D.A. Rasmussen,c) M.H. Redi, G. Renda, G. Rewoldt, D. Roberts,f) J. Rogers, R. Rossmassler, A.L. Roquemore, E. Ruchov,j) S.A. Sabbagh,l) M. Sasao,o) G. Schilling, J. Schivell, G.L. Schmidt, R. Scillia, S.D. Scott, T. Senko, R. Sissingh, C. Skinner, J. Snipes,d) P. Snook, J. Stencel, J. Stevens, T. Stevenson, B.C. Stratton, J.D. Strachan, W. Stodiek, E. Synakowski, W. Tang, G. Taylor, J. Terry,d) M.E. Thompson, J.R. Timberlake, H.H. Towner, A. von Halle, C. Vannoy, R. Wester, R. Wieland, J.B. Wilgen,c) M. Williams, J.R. Wilson, J. Winston, K. Wright, D. Wong,r) K.L. Wong, P. Woskov,d) G.A. Wurden,a) M. Yamada, A. Yeun,r) S. Yoshikawa, K.M. Young, M.C. Zarnstorff, S.J. Zweben
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 389-398
Magnetic Fusion Experiment | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40191
Articles are hosted by Taylor and Francis Online.
The deuterium-tritium (D-T) experimental program on the Tokamak Fusion Test Reactor (TFTR) is underway and routine tritium operations have been established. The technology upgrades made to the TFTR facility have been demonstrated to be sufficient for supporting both operations and maintenance for an extended D-T campaign. To date fusion power has been increased to ∼9 MW and several physics results of importance to the D-T reactor regime have been obtained: electron temperature, ion temperature, and plasma stored energy all increase substantially in the D-T regime relative to the D-D regime at the same neutral beam power and comparable limiter conditioning; possible alpha electron heating is indicated and energy confinement improvement with average ion mass is observed; and alpha particle losses appear to be classical with no evidence of TAE mode activity up to the PFUS ∼ 6 MW level. Instability in the TAE mode frequency range has been observed at PFUS > 7 MW and its effect on performance is under investigation. Preparations are underway to enhance the alpha particle density further by increasing fusion power and by extending the neutral beam pulse length to permit alpha particle effects of relevance to the ITER regime to be more fully explored.