ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
Mark J. Rennich; Bradley E. Nelson
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 376-380
Tokamak Physics Experiment (TPX) | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40189
Articles are hosted by Taylor and Francis Online.
The Tokamak Physics Experiment (TPX) machine design incorporates comprehensive planning for efficient and safe component maintenance. Three programmatic decisions have been made to insure the successful implementation of this objective. First, the tokamak incorporates radiation shielding to reduce activation of components and limit the dose rate to personnel working on the outside of the machine. This allows most of the ex-vessel equipment to be maintained through conventional “hands-on” procedures. Second, to the maximum extent possible, low activation materials will be used inside the shielding volume. This resulted in the selection of Titanium (Ti-6A1-4V) for the vacuum vessel and Plasma Facing Components (PFC) structures. The third decision stipulated that the primary in-vessel components will be replaced or repaired via remote maintenance tools specifically provided for the task. The component designers have been given the responsibility of incorporating maintenance design and for proving the maintainability of the design concepts in full-scale mockup tests prior to the initiation of final fabrication. Remote maintenance of the TPX machine is facilitated by general purpose tools provided by a special purpose design team. Major tools will include an in-vessel transporter, a vessel transfer system and a large component transfer container. In addition, tools such as manipulators and remotely operable impact wrenches will be made available to the component designers by this group. Maintenance systems will also provide the necessary controls for this equipment.