ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
S. Yang, Y. Gohar
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1012-1019
Shielding Neutronic | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40166
Articles are hosted by Taylor and Francis Online.
Design analyses and tradeoff studies for the bulk shield of the Tokamak Fusion Core Experiment (TFCX) were performed. Several shielding options were considered to lower the capital cost of the shielding system. Optimization analyses were carried out to reduce the nuclear responses in the TF coils and the dose equivalent in the reactor hall one day after shutdown. Two TFCX designs with different toroidal field (TF) coil configurations were considered during this work. The materials for the shield were selected based upon trade-off studies and the results from the previous design studies. The main shielding materials are water, concrete, and steel balls (Fe1422 or Nitronic 33). Small amounts of boron carbide and lead are employed to reduce activation, nuclear heating in the TF coils, and dose equivalent after shutdown.