ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
B.B. Glasgow, W.G. Wolfer
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 546-552
Material Engineering — Behavior | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40096
Articles are hosted by Taylor and Francis Online.
Ferritic steels have been shown to swell much less than 316 austenitic stainless steel. For this reason ferritic steels are being considered for fusion reactor applications as an alternative to 316 austenitic stainless steel. A lifetime analysis based on crack propagation has been done for ferritic steel using typical first wall parameters. The results for ferritic steel are compared to results from a similar analysis done for 316 austenitic stainless steel. The comparison shows that ferritic steels have lower thermal stresses than 316 austenitic stainless steel by a factor of about 2. Because of the lower thermal stresses, the cyclic stresses resulting from the plasma-on/plasma-off cycles are reduced and the predicted fatigue crack growth rate is less for ferritic steels. The analysis predicts a lifetime more than 10 times longer for ferritic steel than for 316 austenitic stainless steel. The comparison clearly shows the great potential of ferritic steel over 316 austenitic stainless steel as a first wall material to achieve the high wall loading desired for future fusion reactors.