ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
B.B. Glasgow, W.G. Wolfer
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 546-552
Material Engineering — Behavior | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40096
Articles are hosted by Taylor and Francis Online.
Ferritic steels have been shown to swell much less than 316 austenitic stainless steel. For this reason ferritic steels are being considered for fusion reactor applications as an alternative to 316 austenitic stainless steel. A lifetime analysis based on crack propagation has been done for ferritic steel using typical first wall parameters. The results for ferritic steel are compared to results from a similar analysis done for 316 austenitic stainless steel. The comparison shows that ferritic steels have lower thermal stresses than 316 austenitic stainless steel by a factor of about 2. Because of the lower thermal stresses, the cyclic stresses resulting from the plasma-on/plasma-off cycles are reduced and the predicted fatigue crack growth rate is less for ferritic steels. The analysis predicts a lifetime more than 10 times longer for ferritic steel than for 316 austenitic stainless steel. The comparison clearly shows the great potential of ferritic steel over 316 austenitic stainless steel as a first wall material to achieve the high wall loading desired for future fusion reactors.