ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
D. J. Hoffman, F. W. Baity, W. R. Becraft†, J. B. O. Caughman‡, T. L. Owens
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 411-419
Electrical and Nuclear Component Design | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40079
Articles are hosted by Taylor and Francis Online.
Ion cyclotron resonance heating (ICRH) is expected to become the dominant contributor to the supplemental heating needs of plasmas in future toroidal devices. The severity of the environments that will be imposed on the ICRH antennas by the plasma in such devices requires the investigation of different approaches to providing adequate life and reliability in addition to the necessary coupling. This work, which is part of the National Ion Cyclotron Heating Program, addresses these issues. The rf coupling capabilities and characteristics of various antennas have been measured. The tested antenna configurations include the simple loop antenna operated at resonant lengths as used on Alcator-C, the cavity antenna proposed for Doublet III-D, and the resonant double loop, asymmetric resonant double loop, and U-slot antennas. Models of the voltage, magnetic fields outside the structure, and current have been correlated with the measurements made on these antennas. From these measurements and from typical observations of ICRH coupling in tokamaks, we are studying power and frequency limitations on each antenna and the causes of the limitations. A comparison of the technology, performance, and power limitations of each type of antenna is presented.