ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. S. Tillackb, M. S. Kazimi, L. M. Lidsky
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 239-244
Blanket and First-Wall Engineering | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40051
Articles are hosted by Taylor and Francis Online.
The induced pressures, stresses and strains in unrestrained axisymmetric toroidal shells are studied to scope the behavior of tokamak first walls during plasma disruptions. The modeling includes a circuit analog representation of the shell to solve for induced currents and pressures, and a separate quasi-static 1-D finite element solution for the mechanical response. This work demonstrates that the stresses in tokamkak first walls due to plasma disruption may be large, but to first order will not cause failure in the bulk structure. However, stress concentrations at structural supports and discontinuities together with resonant effects can result in large enhancements of the stresses, which could contribute to plastic deformation or failure when added to the already large steady state thermal and pressure loading of the first wall.