ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
K. A. Murray, J. J. Corugedo, N. J. Hoffman
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1901-1906
Inertial Confinement Fusion Reactor | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40039
Articles are hosted by Taylor and Francis Online.
Two different primary coolants, Li and 83Pb-17Li, have been examined for use in Pulse*Star, a pool-type inertial confinement fusion reactor, and a balance-of-plant design has been generated for each coolant. The use of 83Pb-17Li eliminates concern about the large amount of stored chemical energy found in pure Li fusion reactors. A secondary loop was not included in the 83Pb-17Li coolant design because of the relative nonreactivity of lead-lithium. The design utilizing Li as a primary coolant includes a sodium secondary loop to prevent direct contact between irradiated Li and high-pressure water in the case of a steam generator leak. The secondary loop requires additional piping, pumps, heat exchanger area, and steam generator buildings. These additional costs are mitigated by the low pumping power requirement of Li compared with that of high-density 83Pb-17Li. A cost analysis revealed that the additional costs of the Li coolant design are only slightly greater ($13.5 million) than the cost savings due to the lower pumping power. Preliminary studies indicate that tritium containment will be more costly for the 83Pb-17Li coolant design than for the one involving pure Li because the insolubility of tritium in 83Pb-17Li creates large driving forces for tritium leakage into the surrounding plant. The tradeoff between the two safety concerns of chemical stability in the case of 83Pb-17Li and practicable tritium containment in the case of pure Li needs to be investigated.